Passive House Suitable Component For cool temperate climates, valid until 31. December 2024 Category: Compact Heat Pump System Manufacturer: Stiebel Eltron GmbH & Co. KG, 37603 Holzminden, Germany Product name: LWZ 8 CS Premium This certificate was awarded based on the following criteria (limit values*): Thermal Comfort: $\theta_{\text{supply air}} \ge 16.5^{\circ}\text{C}$ Heat Recovery of ventilation system: η_{WRG,eff} ≥ 75% Electric efficiency ventilation system: Pel ≤ 0,45 Wh/m³ Air tightness (internal/external): V_{Leakage} ≤ 3% Total Primary Energy Demand (**): PE_{total} ≤ 55 kWh/(m²a) Control and calibration (*) Air pollution filters (*) Anti freezing strategy (*) Noise emission and reduction (*) ### Measured values to be used in PHPP useful air flow rates 160 to 230 m³/h | | Heating | | Test point 1 | Test point 3 | Test point 3 | Test point 4 | _ | |---|-------------------------------------|-----------------------------|--------------|--------------|--------------|--------------|----| | | Outside Air
Temperature | T_{amb} | -7 | 2 | 7 | | °C | | | Thermal Output
Heating Heat Pump | $P_{\text{WP},\text{Heiz}}$ | 5.56 | 3.50 | 3.35 | | kW | | | COP number Heating
Heat Pump | COP _{Heiz} | 2.82 | 3.49 | 3.84 | | - | | Maximum available supply air temperature with Heat Pump only(*) | | | 35 | | | | °C | | | root point i | root point o | root point o | root point i | _ | | | |--------------------------------------|---|---|--|---|---|--|--| | T _{amb} | -7 | 2 | 7 | 20 | °C | | | | P _{DHW}
ating up | 5.78 | 5.90 | 6.44 | 6.52 | kW | | | | P _{DHW}
heating | 6.13 | 5.92 | 6.20 | 6.25 | kW | | | | OP _{DHW,}
ating up | 2.18 | 2.48 | 3.02 | 3.74 | - | | | | OP _{DHW}
heating | 2.14 | 2.70 | 2.87 | 3.43 | - | | | | Averge storage tank temperature | | | 49 | | | | | | Specific storage heat losses | | | 1.51 | | | | | | Exhaust air addition (if applicable) | | | 881 | | | | | | F | P _{DHW} atting up P _{DHW} heating DP _{DHW} , atting up OP _{DHW} heating | Tamb -7 PDHW atting up 5.78 PDHW heating 6.13 DPDHW, atting up 2.18 DPDHW heating atture | Тать -7 2 Рым ating up heating 5.78 5.90 Вони heating heating up heating up heating up heating ature 2.18 2.48 ОРони heating ature 2.14 2.70 Ature 4 | Тать -7 2 7 Рону ating up 5.78 5.90 6.44 Рону heating | Тать -7 2 7 20 Рону ating up heating 5.78 5.90 6.44 6.52 Рону heating up heating up heating up heating up heating up heating up heating ature 2.18 2.48 3.02 3.74 2.14 2.70 2.87 3.43 3.41 3.42 3.43 3.43 3.43 3.43 | | | Test point 1 Test point 3 Test point 3 Test point 4 (*) detailed description of criteria and key values see attachment. (**) for heating, domestic hot water (DHW), ventilation, auxiliary electricity in the reference building, explanation see attachment. www.passivehouse.com 0873ch03 Passivhaus Institut Dr. Wolfgang Feist 64283 Darmstadt GERMANY **Heat Recovery** $\eta_{WRG,eff} = 85\%$ Electric efficiency 0.37 Wh/m³ Air tightness $V_{leak, internal} = 2.2\%$ $V_{leak, external} = 1.0\%$ Frost protection down to -15 °C Total Primary Energy Demand (**) 32 kWh/(m²a) ### Attachment to the Certificate(***) ## Stiebel Eltron I WZ 8 CS Premium Manufacturer Stiebel Eltron Gmbh & Co.KG Dr. Stiebel Straße 33, 37603 Holzminden, Germany t: +49 (0)5531 702-95 567 e: info@stiebel-eltron.de i: www.stiebel-eltron.de **Thermal Comfort:** A minimum supply air temperature of 16.5 °C is reached with use of the heat pump. An underground air channel is not required. **Efficiency Criterion – heat**: The heat recovery of the ventilation system incorporated in the unit demonstrates an efficiency of η_{eff} = 85 %. **Efficiency Criterion – electricity:** With a power consumption of 0.37 Wh/m³ at 195 m³/h the unit complies with the maximum consumption of 0.45 Wh/m³. The consumption of 26 W in a standby-mode exceeds the target value of 1 W significantly. **Air tightness and thermal insulation:** The testing of a ventilation system showed that the limiting values of 3% for both the internal and external leakages were not exceeded. **Control and calibration:** A comparison of air volumes is performed automatically by the device. The user has therefore no influence. The required air volume can be adjusted via a control panel on the device. The remote control has a switch, which can be used to increase an amount of air for a pre-set time. **Sound insulation:** The acoustic pressure level was evaluated as 56 dB (A) in the room where the unit is installed with an equivalent absorbtion area of 4 m² and at an air flow rate of 230 m³/h. This is significantly higher than the threshold value of 35 dB(A). The unit must therefore be installed in an adequately sound insulated room separated from the living area. The appropriate silencers should be provided to reduce the noise. The producer will specify a configuration of the silencer. Figure 1: Acoustic emissions of supply duct of the unit [dB] ### Attachment to the Certificate(***) # Stiebel Eltron LWZ 8 CS Premium **Hygienic Indoor Air:** The central ventilation unit, including the heat exchanger, can be easily accessed and cleaned. The filters can be replaced by the user (rather than by a technical expert), instructions and suppliers are included in the manual. The following filter qualities should be used: intake air filter minimum F7, attached in front, exhaust air filter G4. The filter should be replaced, before recommissioning the unit after a summer period when it has not been in use. The manufacturer carries the responsibility to ensure that, through the use of either integral components or mandatory additional fittings, the hygienic quality of the air is sufficiently high. An F5 and G4 filter are installed respectively in the intake and exhaust air streams within the unit. The producer recommends to install a separate fine filter (F7) in a supply stream. The configuration of a F7 filter complies with the recommendations for use in passive houses. **Frost protection:** The device is protected against the icing via a hydraulic circuit of the installed heat pump. An underground air channel is therefore not required. The minimum supply air temperature of 16.5 °C is ensured solely by the frost-protection circuit of the heat pump. Assessment of the heat pump: The seasonal performance factor (SPF) of the system installed in the reference building is 3.0 without use of a ground heat exchanger. The primary energy consumption for the reference building is 32 kWh/(m²a) without use of a ground heat exchanger. This compact heat pump unit can be used in Passive Houses with an air flow rate between 160 m³/h and 230 m³/h, based on an air flow rate of 30 m³/h/person and a heating load of 12 W/m². The outdoor air intake temperatures are raised when a ground heat exchanger is used. The use of a typical ground heat exchanger (***) results in improved values of SFP (3.3) and primary energy consumption (30 kWh/(m²a)). The **maximum available supply air temperature** at a maximum heat load, when the heat pump is running exclusively, was found to be **35** °C at the operating points mentioned in the certificate. In case a higher heat output and hence a higher intake air temperature is needed, this can be realized for example by means of a direct electric heater. Alternatively the temperature of supply air can be increased by changing the configuration of the heat pump according to the manufacturer's instructions. In this case, the higher amount is entered in the heat load sheet of PHPP. Alternatively, the radiators can be used in connection with the heat pump. This is preferable to an operation with a higher supply air temperature. In each case, the electrical circuit must ensure that a direct electrical heater can be only activated by the user when the heat pump operates at full power. The same applies to the configuration of the supply air temperature increased by the heat pump which may also be activated only when necessary. The supply air temperature may not be under any circumstances increased above 52 °C. Figure 2: Application range of the unit (***) A full description of measured results (test report of PHI) is available from the manufacturer